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Total synthesis of verbalactone: an efficient, carbohydrate-based approach
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A carbohydrate-based strategy for the total synthesis of verbalactone has been described. (3R,5R)-3,5-
dihydroxydecanoic acid was dimerised under Yamaguchi conditions to provide verbalactone in an overall
yield of 17% starting from 3-deoxy-1,2:5,6-di-O-isopropylidine-a-D-glucofuranose.

� 2009 Elsevier Ltd. All rights reserved.
Verbalactone (1) is a novel macrocyclic dimer lactone with C2-
symmetry and it exhibits interesting antibacterial activity. Verb-
alactone was isolated1 by Mitaku et al from the roots of Verbascum
undulatum. The structure and the absolute stereochemistry of 1
were determined as 4R, 6R, 10R, 12R by spectral methods (1D
and 2D NMR, MS) and chemical correlation spectroscopy. The mol-
ecule has a NMR profile very similar to (+)-(3R,5R)-dihydroxy-5-
decanolide (2).2
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The unique dimeric lactone, verbalactone (1), has attracted several
organic chemists3–5 to develop its total synthesis. Interesting struc-
tural complexity and our continued interest in the area of synthesis
of bioactive natural products containing 1,3 polyol systems using
carbohydrate-based strategies6 prompted us to undertake the syn-
thesis of 1. Herein, we report a simple and efficient total synthesis
of verbalactone adopting the chiral pool approach.
ll rights reserved.
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Retrosynthetic analysis for Verbalactone 

The retrosynthetic analysis delineated above indicated that verb-
alactone (1) can easily be synthesized exploiting Yamaguchi’s lact-
onization on the key monomer seco acid, (3R,5R)-3,5-dihydroxy
decanoic acid 3, which can in turn be derived from D-glucose via
intermediates 5 and 4 (Scheme 1).

The synthesis of seco acid 3 started with the preparation of 3-
deoxy-1,2;5,6-di-O-isopropylidene- a-D-glucofuranose 5 from D-
glucose.7 Selective deprotection of the 5,6-O-isopropylidene
group of compound 5 with 0.8% H2SO4 in MeOH at ambient tem-
perature afforded the C5–C6 diol in 94% yield. Oxidative cleavage
by using sodium metaperiodate followed by subsequent Wittig
olefination with butyltriphenyl phosphorane provided alkene 6
in the ratio 3:7 (E/Z). Hydrogenation of alkene 6 using Raney-
Ni in ethanol and then hydrolysis of the 1,2-O-isopropylidine
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Scheme 1. Reagents and conditions: (a) Ref. 7; (b) (i) 0.8% aq H2SO4, MeOH, rt, 16 h, 95%; (ii) NaIO4 on silica gel, CH2Cl2, 96%; (iii) C4H9P+Ph3Br�, n-BuLi, THF, 0 �C, 81%; (c) (i)
Raney-Ni, ethanol, 98%; (ii) 4% aq H2SO4, THF, 60 �C, 3 h, 94%; (d) CH3P+Ph3I�, n-BuLi, THF, 0 �C ? rt, 80%; (e) (i) CSA (cat), 2,2-dimethoxypropane, CH2Cl2, 0 �C, 15 min, 98%;
(ii) BH3-DMS, THF, 0 �C, 4 h, 76%; (f) (i) Dess–Martin periodinane, CH2Cl2, 0 �C ? rt, 1 h, 92%; (ii) NaClO2, NaH2PO4.2H2O, 30% H2O2, tBuOH:H2O (3:1), 0 �C ? rt, 3 h, 95%; (g)
CSA (5 mol %), MeOH, rt, 30 min, 80%; (h) (i) 2,4,6-trichlorobenzoylchloride, Et3N, THF, rt, 3 h; (ii) DMAP (30 equiv), toluene, reflux, 4 h, 60% (over two steps).
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group with 4% aq sulfuric acid in THF at 60 �C afforded the dia-
stereomeric lactol 4.

One-carbon Wittig homologation of lactol 4 at 0 �C with in
situ-generated methylenetriphenyl phosphorane yielded syn-1,3-
diol 7, thus providing the desired ten-carbon chain of the verb-
alactone monomer. In the 1H NMR of diol 78, the C4 methylene
protons resonated separately as two distinguishable doublets of
triplets indicating a 1,3-syn-relationship. This was further sub-
stantiated in the 13C NMR studies of its isopropylidene derivative
where the isopropylidene methyl carbons showed two separate
signals at 30.2 and 19.8 ppm. The syn-1,3-diol 7 was transformed
quantitatively into its isopropylidene derivative with 2,2-dime-
thoxypropane in the presence of catalytic camphor sulfonic acid
(CSA). Selective hydroboration9 of this acetonide derivative of 7
with BH3-DMS reagent at 0 �C afforded primary alcohol 8 in
76% yield (9% of its regioisomer). The alcohol 8 on treatment
with Dess–Martin periodinane gave the corresponding aldehyde,
which on further oxidation10 with sodium chlorite in the pres-
ence of 30% H2O2 and sodium dihydrogen phosphate dihydrate
gave acid 9. The spectral and analytical data11 of 9 were in full
agreement with the reported5 compound. The unmasking of the
1,3-isopropylidine group was achieved by treating 9 with cat.
CSA in anhydrous methanol and by carefully controlling the pH
(=6) during work-up3,5 to provide the (3R,5R)-3,5-dihydroxydeca-
noic acid 3.

Finally, the synthesis of verbalactone was successfully com-
pleted using Yamaguchi’s macrolactonization12 to obtain 1 in 60%
yield from 3 as a colorless oil ½a�25

D 9.1 (c 0.9, CHCl3) along with
monomer lactone 2 (22%). The 1H and 13C NMR spectra as well as
other analytical data of synthetic 1 were identical with those of
the natural product.1

In conclusion, an expeditious and economic total synthesis of
verbalactone has been achieved in 17% overall yield by adopting
the chiral pool approach.
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